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Abstract

Modularity is designed to measure the strength of division of a network into clusters (known
also as communities). Networks with high modularity have dense connections between the
vertices within clusters but sparse connections between vertices of different clusters. As a result,
modularity is often used in optimization methods for detecting community structure in networks,
and so it is an important graph parameter from a practical point of view. Unfortunately, many
existing non-spatial models of complex networks do not generate graphs with high modularity;
on the other hand, spatial models naturally create clusters. We investigate this phenomenon by
considering a few examples from both sub-classes. We prove precise theoretical results for the
classical model of random d-regular graphs as well as the preferential attachment model, and
contrast these results with the ones for the spatial preferential attachment (SPA) model that
is a model for complex networks in which vertices are embedded in a metric space, and each
vertex has a sphere of influence whose size increases if the vertex gains an in-link, and otherwise
decreases with time. The results obtained in this paper can be used for developing statistical
tests for models selection and to measure statistical significance of clusters observed in complex
networks.

1 Introduction

Many social, biological, and information systems can be represented by networks, whose vertices
are items and links are relations between these items [2, 7, 9, 16]. That is why the evolution of
complex networks attracted a lot of attention in recent years and there has been a great deal of
interest in modelling of these networks [12, 20, 42]. The hyperlinked structure of the Web, citation
patterns, friendship relationships, infectious disease spread are seemingly disparate linked data sets
which have fundamentally very similar natures. Indeed, it turns out that many real-world networks
have some typical properties: heavy tailed degree distribution, small diameter, high clustering
coefficient, and others [39, 41, 47]. Such properties are well-studied both in real-world networks
and in many theoretical models.

Another important property of complex networks is their community structure, that is, the
organization of vertices in clusters, with many edges joining vertices of the same cluster and com-
paratively few edges joining vertices of different clusters [24, 28]. In social networks communities
may represent groups by interest, in citation networks they correspond to related papers, in the
Web communities are formed by pages on related topics, etc. Being able to identify communi-
ties in a network could help us to exploit this network more effectively. For example, clusters in
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citation graphs may help to find similar scientific papers, discovering users with similar interests
is important for targeted advertisement, clustering can also be used for network compression and
visualization.

The key ingredient for many clustering algorithms is modularity, which is at the same time a
global criterion to define communities, a quality function of community detection algorithms, and
a way to measure the presence of community structure in a network. Modularity was introduced
by Newman and Girvan [43] and it is based on the comparison between the actual density of edges
inside a community and the density one would expect to have if the vertices of the graph were
attached at random, regardless of community structure.

Unfortunately, modularity is not a well studied parameter for the existing random graph models,
at least from a rigorous, theoretical point of view. We are only aware about results for binomial
random graphs G(n, p) and random d-regular graphs (see Section 2.3 for more details). In this
paper, we continue investigating random d-regular graphs and obtain new upper bounds for their
modularity. Then we move to the preferential attachment model, introduced by Barabási and
Albert [8], which is probably the most well-studied model of complex networks. For this model no
results on modularity are known and we obtain both lower and upper bounds. In fact, one of the
lower bound we present holds for all graphs with average degree d and sublinear maximum degree.

As expected, the models discussed above, as well as many others, have a common weakness
of low modularity. One family of models which overcomes this deficiency is the family of spatial
(or geometric) models, wherein the vertices are embedded in a metric space such that similar
vertices are closer to each other than dissimilar ones. The underlying geometry of spatial models
naturally leads to the emergence of clusters. We prove this statement rigorously for one example
of a geometric model, the Spatial Preferential Attachment model introduced in [1].

This paper is a journal version of [44] and is structured as follows. In the next section, we
formally define modularity, discuss several random graph models and present known results on
modularity in these models. In Sections 3, 5 and 6 we analyze modularity in random d-regular
graphs, preferential attachment and SPA models, respectively. In Section 4 we discuss lower bounds
for modularity of forests and constant average degree graphs. Section 7 concludes the paper and
outlines the directions for future research.

2 Preliminaries

2.1 Modularity

The definition of modularity was first introduced by Newman and Girvan in [43]. Since then,
many popular and applied algorithms used to find clusters in large data-sets are based on finding
partitions with high modularity [18, 34, 40]. The modularity function favours partitions in which a
large proportion of the edges fall entirely within the parts and biases against having too few or too
unequally sized parts. Formally, for a given partition A = {A1, . . . , Ak} of the vertex set V (G), let

qA =
∑

A∈A

(

e(A)

|E(G)| −
(
∑

v∈A deg(v))2

4|E(G)|2
)

, (1)

where e(A) = |{uv ∈ E(G) : u, v ∈ A}| is the number of edges in the graph induced by the

set A. The first term,
∑

A∈A
e(A)
|E(G)| , is called the edge contribution, whereas the second one,

∑

A∈A
(
∑

v∈A deg(v))2

4|E(G)|2 , is called the degree tax. It is easy to see that qA is always smaller than

one. Also, if A = {V (G)}, then qA = 0.
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The modularity q∗(G) is defined as the maximum of qA over all possible partitions A of V (G);
that is,

q∗(G) = max
A

qA(G).

In order to maximize qA(G) one wants to find a partition with large edge contribution subject to
small degree tax. If q∗(G) approaches 1 (which is the maximum), we observe a strong community
structure; conversely, if q∗(G) is close to zero, we are given a graph with no community structure.

Modularity is known to have some weaknesses, as discussed in [24]. For example, [25] shows
that this measure fails to detect communities if their sizes are too small. However, despite this,
modularity still remains to be the most popular measure used by many well known clustering
algorithms [18, 34, 40].

2.2 Random graph models

Random d-regular graphs. We consider the probability space of random d-regular graphs with
uniform probability distribution. This space is denoted Gn,d, and asymptotics are for n → ∞ with
d ≥ 2 fixed, and n even if d is odd.

We say that an event in a probability space holds asymptotically almost surely (or a.a.s.) if the
probability that it holds tends to 1 as n goes to infinity. Since we aim for results that hold a.a.s.,
we will always assume that n is large enough.

Preferential Attachment. The Preferential Attachment (PA) model [8] was an early stochastic
model of complex networks. We will use the following precise definition of the model, as considered
by Bollobás and Riordan in [13] as well as Bollobás, Riordan, Spencer, and Tusnády [14].

Let G0
1 be the null graph with no vertices (or let G1

1 be the graph with one vertex, v1, and
one loop). The random graph process (Gt

1)t≥0 is defined inductively as follows. Given Gt−1
1 , we

form Gt
1 by adding a vertex vt together with a single edge between vt and vi, where i is selected

randomly with the following probability distribution:

P(i = s) =

{

deg(vs, t− 1)/(2t − 1) 1 ≤ s ≤ t− 1,

1/(2t − 1) s = t,

where deg(vs, t− 1) denotes the degree of vs in Gt−1
1 (loops are counted twice). In other words, at

t-th step of the process we send an edge e from vt to a random vertex vi, where the probability
that a vertex is chosen is proportional to its current degree, counting e as already contributing one
to the degree of vt.

For m ∈ N \ {1}, the process (Gt
m)t≥0 is defined similarly with the only difference that m edges

are added to Gt−1
m to form Gt

m (one at a time), counting previous edges as already contributing to
the degree distribution. Equivalently, one can define the process (Gt

m)t≥0 by considering the process
(Gt

1)t≥0 on a sequence v′1, v
′
2, . . . of vertices; the graph Gt

m is formed from Gtm
1 by identifying vertices

v′1, v
′
2, . . . , v

′
m to form v1, identifying vertices v′m+1, v

′
m+2, . . . , v

′
2m to form v2, and so on. Note that

in this model Gt
m is in general a multigraph, possibly with multiple edges between two vertices (if

m ≥ 2) and self-loops.
It was shown in [14] that for any m ∈ N a.a.s. the degree distribution of Gn

m follows a power
law: the number of vertices with degree at least k falls off as (1 + o(1))ck−2n for some explicit
constant c = c(m) and large k ≤ n1/15. Also, in the case m = 1, each vertex sends an edge either
to itself or to an earlier vertex, so Gn

1 is a forest with each component containing a single looped
vertex. The expected number of components is then

∑n
t=1 1/(2t−1) ∼ (1/2) log n and, since events
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are independent, we derive that a.a.s. there are (1/2 + o(1)) log n components in Gn
1 by Chernoff’s

bound. In contrast, for the case m ≥ 2 it is known that a.a.s. Gn
m is connected and its diameter is

(1 + o(1)) log n/ log log n [13].

Spatial Preferential Attachment. The Spatial Preferential Attachment (SPA) model [1], de-
signed as a model for the World Wide Web, combines geometry and preferential attachment, as
its name suggests. Setting the SPA model apart is the incorporation of ‘spheres of influence’ to
accomplish preferential attachment: the greater the degree of a vertex, the larger its sphere of
influence, and hence the higher the likelihood of the vertex gaining more neighbours.

We now give a precise description of the SPA model. Let S = [0, 1]m be the unit hypercube in
R
m, equipped with the torus metric derived from any of the Lp norms. This means that for any

two points x and y in S,

d(x, y) = min
{

||x− y + u||p : u ∈ {−1, 0, 1}m
}

.

The torus metric thus ‘wraps around’ the boundaries of the unit square; this metric was chosen to
eliminate boundary effects. The parameters of the model consist of the link probability p ∈ [0, 1],
and two positive constants A1 and A2, which, in order to avoid the resulting graph becoming too
dense, must be chosen so that pA1 < 1. The SPA model generates stochastic sequences of directed
graphs (Gt : t ≥ 0), where Gt = (Vt, Et), and Vt ⊆ S. Let deg−(v, t) be the in-degree of the vertex
v in Gt, and deg+(v, t) its out-degree. We define the sphere of influence S(v, t) of the vertex v at
time t ≥ 1 to be the ball centered at v with volume |S(v, t)| defined as follows:

|S(v, t)| = min

{

A1deg−(v, t) + A2

t
, 1

}

. (2)

The process begins at t = 0, with G0 being the null graph. Time step t, t ≥ 1, is defined to be
the transition between Gt−1 and Gt. At the beginning of each time step t, a new vertex vt is chosen
uniformly at random from S, and added to Vt−1 to create Vt. Next, independently, for each vertex
u ∈ Vt−1 such that vt ∈ S(u, t− 1), a directed link (vt, u) is created with probability p. Thus, the
probability that a link (vt, u) is added in time-step t equals p |S(u, t− 1)|.

The SPA model produces scale-free networks, which exhibit many of the characteristics of real-
life networks (see [1, 19]). In [31], it was shown that the SPA model gave the best fit, in terms of
graph structure, for a series of social networks derived from Facebook. In [32], some properties of
common neighbors were used to explore the underlying geometry of the SPA model and quantify
vertex similarity based on distance in the space. However, the distribution of vertices in space
was assumed to be uniform [32] and so in [33] non-uniform distributions were investigated which is
clearly a more realistic setting.

2.3 Previous results on modularity

In this section we discuss known bounds for modularity in different random graph models.
The isoperimetric number (known also as edge expansion) of a graph G is defined as

ρ(G) = min
V (G)=V1∪V2

e(V1, V2)

min{|V1|, |V2|}
,

where e(V1, V2) = |{uv ∈ E(G) : u ∈ V1, v ∈ V2}| is the number of edges between the sets V1 and V2.
The following result was shown by McDiarmid and Skerman in [35]. Let G be any d-regular graph
on n vertices. Then, the following useful upper bound on the modularity is almost immediate:

q∗(G) ≤ max{1 − ρ(G)/d, 3/4}. (3)
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Table 1: Upper bounds U1, U3 for q∗(Gn,d) and U2 for qδ(Gn,d)

d U1 U2 U3

3 0.9386 0.8771 0.8038
4 0.8900 0.7800 0.6834
5 0.8539 0.7078 0.6024
6 0.8261 0.6521 0.5435
7 0.8038 0.6076 0.4984
8 0.7855 0.5710 0.4624
9 0.7702 0.5403 0.4330
10 0.7570 0.5140 0.4083

Turning to random d-regular graphs, Bollobás in [11] showed that a.a.s. ρ(Gn,d) ≥ (1−η)d/2, where
0 < η < 1 is such that 24/d < (1 − η)1−η(1 + η)1+η and so a.a.s.

q∗(Gn,d) ≤ U1 = U1(d) := max{1/2 + η/2, 3/4}.

As a result, we get the first non-trivial upper bounds for q∗(Gn,d) presented in Table 1 that hold
a.a.s.

In [35], the bound (3) was slightly improved when the maximum size of parts in our partition is
restricted. Formally, given δ > 0, for a graph G with n ≥ 1/δ vertices, they define qδ(G) to be the
maximum modularity of all partitions for G such that each part has size at most δn. They show
that for any ε > 0 there exists δ > 0 such any d-regular graph with at least 1/δ vertices satisfies

qδ(G) ≤ 1 − 2ρ(G)/d + ε.

Again, using the result of Bollobás we get that there exists δ > 0 such that

U2 = U2(d) := η + ε

serves as an upper bound that holds a.a.s. for qδ(Gn,d); again, see Table 1 for numerical values for
small values of d. It is straightforward to see that (G) ≥ d/2−

√

(log 2)d (see, for example, [11]) and
so, in particular, U2 can be made arbitrarily small by taking d large enough (and δ small enough).
However, let us note that these upper bounds for qδ(Gn,d), while useful, cannot be directly translated
into any bound for q∗(Gn,d).

Investigating random d-regular graphs continues in [36], a very recent paper. In fact, the
numerical upper bound presented in Section 3.3, as well as the result in Theorem 4, are obtained
independently there. Moreover, [36] investigates the class of graphs whose product of treewidth
and maximum degree is much less than the number of edges. Their result shows, for example, that
random planar graphs typically have modularity close to 1, which is another indication that clusters
naturally emerge where geometry is included. Also, a particular case of their theorem shows that
trees with maximum degree o(n) have asymptotic modularity one.

3 Random d-regular graphs

3.1 Pairing model

Instead of working directly in the uniform probability space of random regular graphs on n vertices
Gn,d, we use the pairing model (also known as the configuration model) of random regular graphs,
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first introduced by Bollobás [10], which is described next. Suppose that dn is even, as in the case of
random regular graphs, and consider dn points partitioned into n labelled buckets v1, v2, . . . , vn of
d points each. A pairing of these points is a perfect matching into dn/2 pairs. Given a pairing P ,
we may construct a multigraph G(P ), with loops allowed, as follows: the vertices are the buckets
v1, v2, . . . , vn, and a pair {x, y} in P corresponds to an edge vivj in G(P ) if x and y are contained
in the buckets vi and vj, respectively. It is an easy fact that the probability of a random pairing
corresponding to a given simple graph G is independent of the graph, hence the restriction of
the probability space of random pairings to simple graphs is precisely Gn,d. Moreover, it is well

known that a random pairing generates a simple graph with probability asymptotic to e−(d2−1)/4

depending on d, so that any event holding a.a.s. over the probability space of random pairings also
holds a.a.s. over the corresponding space Gn,d. For this reason, asymptotic results over random
pairings suffice for our purposes. For more information on this model, see, for example, the survey
of Wormald [48].

3.2 Lower bound

For completeness, let us briefly discuss the following known lower bound for the modularity of Gn,d.
It is known that a.a.s. for any d ∈ N \ {1, 2}, Gn,d is Hamiltonian. As pointed out in [35], one can
use this fact to partition the graph such that it breaks the cycle into ⌈√n⌉ paths of length at most
⌈√n⌉. For this particular partition the edge contribution is 2/d − O(1/

√
n) and the degree tax is

O(1/
√
n). It follows then that a.a.s.

q∗(Gn,d) ≥ 2

d
−O(1/

√
n) =

2 + o(1)

d
.

(Our more general lower bound that holds for graphs with average degree d implies the same—see
Theorem 6 for more.) Whereas this trivial lower bound could be sharp for d = 3 it is definitely not
the case for large d. As pointed out in [36], there exists a universal constant c > 0 such that a.a.s.
q∗(Gn,d) ≥ c/

√
d.

3.3 Numerical upper bound

The following straightforward lemma is useful for obtaining upper bounds for modularity of random
d-regular graphs.

Lemma 1 Consider any d-regular graph on n vertices Gn,d. If no subset of V (Gn,d) of size xn
induces yxn/2 edges with y/d− x ≥ U , then q∗(Gn,d) < U .

Proof. For a given partition A = {A1, . . . , Ak} of the vertex set V (G), let xi = |Ai|/n and
yi = 2|E(Ai)|/|Ai|; that is, set Ai has xin vertices and induces yixin/2 edges. Then, taking into
account the fact that for any A ⊆ V (G) we have

∑

v∈A deg(v) = d|A|, we can rewrite (1) as

qA =

k
∑

i=1

xi

(yi
d
− xi

)

. (4)

As it is simply a weighted average, qA ≥ U would imply that there exists some set of size xn that
induces yxn/2 edges, and y/d− x ≥ U . So, the proof of the lemma is finished. �
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To formulate the main theorem of this section, we need the following notation. For a given
d ∈ N \ {1, 2}, let

f(x,y, d) := x(y/2 − 1) log(x) + (1 − x)(d− 1) log(1 − x) + d log(d)/2 (5)

− xy log(y)/2 − x(d− y) log(d− y) − (d− 2xd + xy) log(d− 2xd + xy)/2.

It will be clear once we establish the connection between function f and random d-regular graphs,
but it is straightforward to see that for any x ∈ (0, 1) we have f(x, d, d) < 0 (more precisely, its
limit value) and f(x, y, d) > 0 for some y ∈ (0, d). Indeed, for example note that f(x, xd, d) =
−x log(x) + (x− 1) log(1 − x) > 0. Also, it is easy to see that f(x, y, d) is continuous on y ∈ (0, d).

Finally, let ȳ = ȳ(x, d) be largest value of y ∈ (0, d) such that f(x, y, d) = 0; in particular,
f(x, y, d) < 0 for any y ∈ (ȳ, d).

Theorem 2 Let d ∈ N \ {1, 2} and ε > 0 be an arbitrarily small constant. Then a.a.s.

q∗(Gn,d) ≤ U3 + ε/d,

where

U3 = U3(d) := sup
x∈(0,1)

(

ȳ(x, d)

d
− x

)

.

As usual, see Table 1 for numerical values for small values of d.
Proof. We prove below that the following property holds a.a.s. for Gn,d. No set A of size xn (for
any x = x(n) ∈ (0, 1)) induces a graph with yxn/2 edges, where ȳ(x, d) + ε ≤ y ≤ d and ȳ(x, d) is
defined as above. Then Theorem 2 follows directly from Lemma 1.

Consider Gn,d for some d ∈ N \ {1, 2} and let ε > 0 be an arbitrarily small constant. Our
goal is to show that the expected number of sets S such that |S| = xn and e(S) = yxn/2 with
y ≥ ȳ(x, d)+ε is o(n−2). (For simplicity, we do not round numbers that are supposed to be integers
either up or down; this is justified since these rounding errors are negligible to the asymptomatic
calculations we will make.) This, together with the first moment principle, implies that a.a.s. no
such set exists for any x ∈ (0, 1) and y ∈ [ȳ(x, d) + ε, d] (as there are O(n) possible sizes of S and
O(n) possible values of e(S) that we need to consider).

Let x = x(n) and y = y(n) be any functions of n such that 0 < x < 1 and ȳ(x, d) + ε < y < d.
Let X(x, y) be the expected number of sets S such that |S| = xn and e(S) = yxn/2. Using the
pairing model, it is clear that

X(x, y) =

(

n

xn

)(

dxn

yxn

)(

d(1 − x)n

(d− y)xn

)

((d− y)xn)!M(yxn)

· M(d(1 − x)n− (d− y)xn)/M(dn),

where M(i) is the number of pairings of i vertices, that is,

M(i) =
i!

(i/2)!2i/2
.

(Each time we deal with pairings, i is assumed to be an even number.) After simplification we get

X(x, y) = n! (dxn)! (d(1 − x)n)! (yxn)!(dn/2)! 2dn/2 ·
[

(xn)! ((1 − x)n)! (yxn)!

((d− y)xn)!
(yx

2
n
)

! 2
yx
2
n

(

d− 2dx + yx

2
n

)

! 2
d−2dx+yx

2
n(dn)!

]−1

.
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Using Stirling’s formula (i! ∼
√

2πi(i/e)i) and focusing on the exponential part we obtain

X(x, y) = Θ(n−1)ef(x,y,d)n,

where f(x, y, d) is defined in (5). It follows immediately from the definition of ȳ(x, d) that f(x, y, d) <
0 is bounded away from zero for any pairs of integers xn and yxn/2 under consideration, and so
for any pair we get X(x, y) = o(n−2) and the proof is finished. �

3.4 Explicit but weaker upper bound

Theorem 2 provides an upper bound that can be easily numerically computed for a given d ∈
N \ {1, 2}. Next, we present a slightly weaker but an explicit bound that can be obtained using the
expansion properties of random d-regular graphs that follow from their eigenvalues. In particular,
it will imply that a.a.s. q∗(Gn,d) = O(1/

√
d) and so q∗(Gn,d) → 0 as d → ∞.

The adjacency matrix A = A(G) of a given d-regular graph G with n vertices, is an n× n real
and symmetric matrix. Thus, the matrix A has n real eigenvalues which we denote by λ1 ≥ λ2 ≥
· · · ≥ λn. It is known that certain properties of a d-regular graph are reflected in its spectrum but,
since we focus on expansion properties, we are particularly interested in the following quantity:
λ = λ(G) = max(|λ2|, |λn|). In words, λ is the largest absolute value of an eigenvalue other than
λ1 = d (for more details, see the general survey [29] about expanders, or [6], Chapter 9).

The value of λ for random d-regular graphs has been studied extensively. A major result due
to Friedman [26] is the following:

Lemma 3 ([26]) For every fixed ε > 0 and for G ∈ Gn,d, a.a.s.

λ(G) ≤ 2
√
d− 1 + ε.

We prove the following theorem.

Theorem 4 Let d ∈ N \ {1, 2}. Then, for any d-regular graph Gn,d we have

q∗(Gn,d) ≤ λ

d
.

In particular, for random d-regular graphs a.a.s.

q∗(Gn,d) ≤ 2√
d
.

Proof. The second part of the theorem follows from Lemma 3, as for a random d-regular graphs

a.a.s. λ
d ≤ 2

√
d−1+ε
d ≤ 2√

d
for sufficiently small ε > 0. Let us now show that q∗(Gn,d) ≤ λ

d .

The number of edges |E(S, T )| between sets S and T is expected to be close to the expected
number of edges between S and T in a random graph of edge density d/n, namely d|S||T |/n. A
small λ (or large spectral gap) implies that this deviation is small. Namely, for our purpose here
we will use the following lower estimate for |E(S, V \ S)|

|E(S, V \ S)| ≥ (d− λ)|S||V \ S|
n

(6)

for all S ⊆ V . This is proved in [5], see also [6]. Using this inequality we get immediately that for
any S of size xn we have

e(S) =
d|S| − |E(S, V \ S)|

2
≤ dxn− (d− λ)x(1 − x)n

2
=

dx + λ(1 − x)

2
· xn. (7)
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So, a.a.s., in Gn,d no set A of size xn induces a graph with more than yxn/2 edges, where
y = dx + λ(1 − x). Now the desired upper bound follows from Lemma 1. �

We have also tried several other ideas attempting to obtain a better upper bound. Unfortunately,
they did not lead to improvements, therefore we place the discussion of these ideas to Appendix.

4 Lower bounds in terms of average degree

In this section, we obtain some general lower bounds for modularity. In particular, the obtained
bounds are useful for graphs with bounded average degree. In Section 5, we apply these results to
obtain a lower bound for the modularity of preferential attachment model (see Theorem 10).

Let us start with the analysis of trees. It was proven in [38] that trees with maximum degree
∆ = o( 5

√
n) have asymptotic modularity 1. We generalize this result in two ways: first, we relax

the condition on maximum degree; second, we allow our graphs to be disconnected, that is, we
consider forests instead of trees. We prove the following theorem.

Theorem 5 Let {Fn} be a sequence of forests, where Fn has n non-isolated vertices and the max-
imum degree ∆ = ∆(Fn). Then the following lower bound holds

q∗(Fn) ≥ 1 − 3

√

∆

n
.

This theorem implies that if the maximum degree ∆(Fn) = o(n), then q∗(Fn) = 1 − o(1). Note
that it is also known that the asymptotic modularity of trees with maximum degree ∆ = Ω(n) is
strictly less than 1 [38]. Hence, the assumption ∆ = o(n) cannot be eliminated.

We further generalize the above theorem to all connected graphs and prove the following result.

Theorem 6 Let {Gn} be a sequence graphs, where Gn is a connected graph on n vertices with the
maximum degree ∆ = ∆(Gn) and the average degree d̄ = d̄(Gn). Then

q∗(Gn) ≥ 2

d̄
− 3

√

∆

nd̄
− ∆

nd̄
.

The theorem implies that if d̄(Gn) ≤ D for some constant D and ∆(Gn) = o(n), then q∗(Gn) ≥
2
D − o(1). Note that for d̄ = 2 Theorem 6 looks similar to Theorem 5. However, there are two
important differences: Theorem 6 is not restricted to forests, but requires graphs to be connected.

Before we prove both theorems let us introduce some notation and the main lemma which we
will use.

Definition 7 Let G be a graph and let A be any subset of its vertex set V (G). We define volG(A) :=
∑

v∈A deg(v), where deg(v) is the degree of a vertex v in G. We also use the notation volG(G′) :=
volG(V (G′)), where G′ is a subgraph of G.

Lemma 8 For every connected graph G with maximum degree ∆ and every h > 0 there exists a
partition of the vertex set into connected parts A1, . . . , Ak such that h

∆ − 1 ≤ volG(Ai) ≤ h. for all
1 ≤ i ≤ k.

Proof. For a graph G let us consider its spanning tree T and decompose it, by removing some
edges, into subtrees T1, . . . , Tk such that h

∆ − 1 ≤ volG(Ti) ≤ h for each 1 ≤ i ≤ k. The way we do
this decomposition is in a sense similar to the algorithm greedy-decompose≤h from [38]. Namely,
we first redefine a notion of a centroid edge of a subtree T ′ of the initial tree T .

9



Definition 9 The removal of any edge from a tree T ′ splits T ′ into two parts T 1 and T 2. A centroid
edge of T is an edge chosen to maximize min{volG(T 1), volG(T 2)}.

Our algorithm is the following: as long as our forest contains a tree T ′ with volG(T ′) > h, it
finds a centroid edge e of T ′ and removes it. After this decomposition, we obtain trees T1, . . . , Tk

and we set Ai = V (Ti) for 1 ≤ i ≤ k.
Obviously, for each i we have volG(Ai) ≤ h. Let us show that we also have volG(Ai) ≥ h

∆ − 1.
Consider any step of our decomposition procedure. We take a tree T ′ with volG(T ′) = h′ > h,
remove its centroid edge e, and obtain two trees T 1 and T 2. Without loss of generality we may
assume that volG(T 1) ≤ volG(T 2). Let s = volG(T 1), s ≤ h′/2. Let x be the vertex incident with
e and belonging to T 2. For every edge e′ incident with x, for the part T ′′ of T ′ − e′ not containing
x we have volG(T ′′) ≤ s (otherwise e is not a centroid edge). As x has degree at most ∆, we have
h′ ≤ ∆s+∆ (at most s for each of the ≤ ∆ parts plus the degree of x itself). So, s ≥ h′−∆

∆ > h
∆ −1.

This proves that volG(Ai) ≥ h
∆ − 1 and completes the proof of the lemma. �

Now, we are ready to prove Theorem 6 and Theorem 5.
Proof. (Proof of Theorem 6.) Let us take h =

√
n∆d̄ + ∆ and partition V (Gn) into A1, . . . , Ak

according to Lemma 8. To obtain the desired lower bound, we estimate qA for A = {A1, . . . , Ak}.
We first deal with the edge contribution. As stated in Lemma 8, we have volGn(Ai) >

h
∆ − 1 for all

i. Also,
∑

i volGn(Ai) = volGn(Gn) = nd̄. Therefore, k ≤ nd̄/( h
∆ − 1). The number of intracluster

edges in the spanning tree is n− k, and clearly this is the lower bound for
∑

A∈A e(A). Finally,

∑

A∈A

e(A)

|E(Gn)| ≥
n− k

nd̄/2
≥ 2

d̄
− 2

h
∆ − 1

=
2

d̄
− 2

√

∆

nd̄
.

It remains to estimate the degree tax. Recall that a volGn(Ai) ≤ h for all i and
∑

i volGn(Ai) =
nd̄. Therefore,

∑

A∈A

vol2Gn
(A)

4|E(Gn)|2 =
hnd̄

n2d̄2
=

h

nd̄
=

√

∆

nd̄
+

∆

nd̄
.

and so the proof is finished. �

Proof. (Proof of Theorem 5.) This proof is similar to the previous one. Let us fix h =
√

∆n.
The idea is to partition V (Fn) into A1, . . . , Ak such that for each i: volFn(Ai) ≤ h and a subgraph
induced by Ai is a tree. Our forest Fn may already contain trees T1, . . . , Tℓ with volFn(Ti) ≤ h.
Let us denote the corresponding vertex sets by A1, . . . , Al. We decompose the remaining trees
according to Lemma 8 (applied to each tree separately) into Al+1, . . . , Ak.

Now we have the partition A = {A1, . . . , Ak} of the vertex set V (Fn). In order to estimate qA
we first consider the edge contribution. According to Lemma 8, volFn(Ai) ≥ h

∆−1 for ℓ+1 ≤ i ≤ k.

Therefore, it is easy to show that for each intercluster edge we can find at least h
2∆ − 1 inracluster

edges. Hence,
∑

A∈A

e(A)

|E(Fn)| ≥ 1 − 1
h
2∆

= 1 − 2

√

∆

n
.

It remains to estimate the degree tax. Recall that volFn(Ai) ≤ h for 1 ≤ i ≤ k and
∑

i volFn(Ai) ≥
n. Therefore,

∑

A∈A

vol2Fn
(A)

4|E(Fn)|2 ≤ h volFn(Fn)

volFn(Fn)2
≤ h

n
=

√

∆

n
.

and so the proof is finished. �
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5 The Preferential Attachment model

5.1 Lower bound

The following theorem easily follows from the results of the previous section.

Theorem 10 For any ε > 0 a.a.s.

q∗(Gn
m) ≥ 1

m
−O

(

n−1/4+ε
)

=
1

m
− o(1).

Proof. Let ε > 0. It is well-known that a.a.s. ∆(Gn
m) = O

(

n
1

2
+2ε
)

(see, e.g., [22] and Theorem 17

in [12]). Also, clearly the average degree of Gn
m is at most 2m (it can be less due to the removal of

loops and multiple edges). In addition, for m ≥ 2 a.a.s. Gn
m is connected [13]. So, the statement of

Theorem 10 follows directly from Theorems 5 and 6. �

We would like to remark that the obtained lower bound holds for many other models of complex
networks. For example, it holds for the Random Apollonion Network [50] (in this case m = 3) or
for the Buckley-Osthus model [17] (with slightly corrected error term).

As in the case of random d-regular graphs, it is natural to conjecture that the above lower bound
is not sharp. Let c ∈ (0, 1) and consider the following partition: A1 = {v1, . . . , vcn}, A2 = V (Gn

m) \
A1 = {vcn+1, . . . , vn}. Using martingales, it is possible to show that a.a.s.

∑

v∈A1
deg(v, n) ∼

2mn
√
c (and so

∑

v∈A2
deg(v, n) ∼ 2mn(1−√

c)); see Lemma 11 below. Clearly, e(A1) = mcn and
so a.a.s. e(A1, A2) ∼ 2mn(

√
c − c) and e(A2) ∼ mn(1 + c − 2

√
c). The edge contribution and the

degree tax are then both asymptotic to 1 + 2c − 2
√
c. Not surprisingly, such partition cannot be

used to get a non-trivial lower bound for the modularity but, similarly to the situation for random
d-regular graphs, we may try to use it as a starting point to get slightly better partition. The basic
idea is very simple: one can start with a given partition (or partition the vertices randomly into two
classes), and if a vertex has more neighbours in the other class than in its own, then we randomly
decide whether to shift it to the other class or leave it where it is. This approach proved to be
useful to get a bound for the bisection width in random d-regular graphs [3] which, in turn, yields
a lower bound for the modularity [36]. In the proceeding version of this paper [44] we promised to
investigate this approach. However, the following turns out to be slightly easier to do.

We will use the following standard martingale tool: the Hoeffding-Azuma inequality ; for more de-
tails, see, for example, [30]. Let X0,X1, . . . be a martingale. Suppose that there exist c1, c2, . . . , cn >
0 such that |Xk −Xk−1| ≤ ck for each 1 ≤ k ≤ n. Then, for every x > 0,

P[Xn > EXn + x] ≤ exp

(

− x2

2
∑n

k=1 ck
2

)

. (8)

The Hoeffding-Azuma inequality can be generalized to include random variables close to mar-
tingales. One of our proofs, proof of Lemma 11, will use the supermartingale method of Pittel et
al. [46], as described in [49, Corollary 4.1]. Let X0,X2, . . . ,Xn be a sequence of random variables.
Suppose that there exist c1, c2, . . . , cn > 0 and b1, b2, . . . , bn > 0 such that

|Xk −Xk−1| ≤ ck and E[Xk −Xk−1|Xk−1] ≤ bk

for each 1 ≤ k ≤ n. Then, for every x > 0,

P

[

For some t with 0 ≤ t ≤ n: Xt −X0 >
t
∑

k=1

bk + x

]

≤ exp

(

− x2

2
∑n

k=1 ck
2

)

. (9)

Let us now prove the following lemma.
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Lemma 11 Fix any constant c ∈ (0, 1) and m ∈ Z≥0. The following property holds a.a.s. for Gn
m.

For any s, cn ≤ s ≤ n,
∣

∣

∣
Ys − 2mn

√

cs/n
∣

∣

∣
≤ (mn)2/3,

where Ys :=
∑

w∈[cn] deg(w, s).

Proof. In view of the identification between the models Gn
m (on the vertex set 1, 2, . . . , n) and

Gmn
1 (on the vertex set 1′, 2′, . . . ,mn′), it will be useful to investigate the following random variable

instead of Ys: for m⌊cn⌋ ≤ t ≤ mn, let

Xt =
∑

j′∈[cmn]

deg(j′, t).

Clearly, Ys = Xsm. It follows that Xm⌊cn⌋ = Y⌊cn⌋ = 2m⌊cn⌋. Moreover, for m⌊cn⌋ < t ≤ mn,

Xt =

{

Xt−1 + 1 with probability Xt−1

2t−1 ,

Xt−1 otherwise.

The conditional expectation is given by

E (Xt|Xt−1) = (Xt−1 + 1) · Xt−1

2t− 1
+ Xt−1

(

1 − Xt−1

2t− 1

)

= Xt−1

(

1 +
1

2t− 1

)

.

Taking expectation again, we derive that

EXt = EXt−1

(

1 +
1

2t− 1

)

.

Hence, it follows that

E(Ys) = E(Xsm) = 2m⌊cn⌋
sm
∏

i=m⌊cn⌋+1

(

1 +
1

2i− 1

)

= 2m⌊cn⌋Γ(sm + 1)Γ(m⌊cn⌋ + 1/2)

Γ(sm + 1/2)Γ(m⌊cn⌋ + 1)

∼ 2cmn
( sm

cmn

)1/2
= 2mn

√

cs/n.

In order to transform Xt into something close to a martingale (to be able to apply the generalized
Azuma-Hoeffding inequality (9)), we set for m⌊cn⌋ ≤ t ≤ mn

Zt = Xt − 2m⌊cn⌋ −
t
∑

k=m⌊cn⌋+1

√

cmn/k

(note that Zm⌊cn⌋ = 0) and use the following stopping time

T = min
{

t > m⌊cn⌋ : Xt > 2
√
tcmn + t2/3 or t = mn

}

.

Indeed, we have for m⌊cn⌋ < t ≤ mn

E (Zt − Zt−1 | Zt−1) =
Xt−1

2t− 1
−
√

cmn/t ≤ (1/2 + o(1))t−1/3 < 0.51t−1/3,
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provided t ≤ T , and |Zt − Zt−1| ≤ 1 as t > cmn. Let t ∧ T denote min{t, T}. We apply the
generalized Azuma-Hoeffding inequality (9) to the sequence (Zt∧T : m⌊cn⌋ ≤ t ≤ mn), with ct = 1,
bt = 0.51t−1/3 and x = 0.1t2/3, to conclude that a.a.s. for all t such that m⌊cn⌋ ≤ t ≤ mn

Zt∧T − Zm⌊cm⌋ = Zt∧T ≤
∑

k≤t

bk + x ≤ 0.77t2/3 + 0.1t2/3 ≤ 0.9t2/3.

To complete the proof we need to show that a.a.s. T = mn. The events asserted by the equation
hold a.a.s. up until time T , as shown above. Thus, in particular, a.a.s.

XT = ZT + 2m⌊cn⌋ +

T
∑

k=m⌊cn⌋+1

√

cmn/k

≤ 0.9T 2/3 + 2mcn +
√
cmn

∫ T

mcn
1/
√
k dk + O(1)

< 2
√
Tcmn + T 2/3,

which implies that T = mn a.a.s. In particular, it follows that a.a.s., for any cn ≤ s ≤ n,
Ys = Xms < 2mn

√

cs/n + (mn)2/3 = 2mn
√

cs/n + o(n). The lower bound can be obtained by
applying the same argument symmetrically to (−Zt∧T : m⌊cn⌋ ≤ t ≤ mn), and so the proof is
finished. �

Now, we are ready to prove the following, stronger, lower bound.

Theorem 12 A.a.s.:

q∗(Gn
m) ≥ E

(
∣

∣

∣
Bin(m, 1/2) −m/2

∣

∣

∣

)

/m + o(1).

That is, a.a.s.

q∗(Gn
m) ≥

{

(21−m/m)
∑m/2

i=1 i
( m
m/2+i

)

if m is even,

(21−m/m)
∑(m+1)/2

i=1 (i− 1/2)
( m
(m−1)/2+i

)

if m is odd,

In particular, a.a.s. q∗(Gn
m) = Ω (1/

√
m).

Before we prove the theorem, let us present numerical values for a few values of m: L1 =
L1(m) = 1/m is the lower bound following from Theorem 10 and L2 = L2(m) is the lower bound
from Theorem 12; see Table 2. Large degree tax hidden in L2 makes this bound weaker for small
values of m ≤ 6; for larger values L2 is better than L1.

Table 2: Lower bounds for q∗(Gn
m)

m 7 8 9 10 100 1000

L1 0.142 0.125 0.111 0.100 0.0100 0.0010
L2 0.156 0.136 0.136 0.123 0.0397 0.0126

Proof. Let ε > 0 be any constant. Let us start with generating Gεn
m ; vertices from [εn/4] are

coloured red and vertices from [εn] \ [εn/4] are coloured blue. We will continue generating Gn
m,

colouring vertices red or blue (one by one, as they are introduced in the process), depending on
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how many of their neighbours are of each colour. We want to control the sum of degrees of vertices
in each colour; that is, the following random variable

Yt :=
∑

w∈[t],w is red

deg(w, t).

The colouring process depends on the parity of m. If m is even, we colour vertex t ∈ [n] \ [εn] red
if more than m/2 neighbours (in Gt

m) are red. If the number of red neighbours is precisely m/2,
we colour it red with probability 1/2 + pt, where pt = pt(Yt−1) = o(1) will be determined soon.
Otherwise, t is coloured blue. If m is odd, the process is slightly different. If the number of red
neighbours is more than (m+1)/2, we colour it red. If it is (m+1)/2 or (m−1)/2, we colour it red
with probability 1 − qt and, respectively rt, where qt + rt = qt(Yt−1) + rt(Yt−1) = o(1). Otherwise,
t is coloured blue. The arguments for both cases are almost identical so we assume now that m is
even; it will be clear what needs to be adjusted for odd value of m. In both situations, our hope is
that the two graphs, induced by red and blue vertices, will be dense.

It follows from Lemma 11 that a.a.s. |Yεn − mεn| ≤ (mεn)2/3, so we may assume that this
inequality holds. This time we use the following stopping time

T = min
{

t > εn : |Yt −mt| > 2(mt)2/3 or t = n
}

.

Arguing as in the previous lemma, we get that

E(Yt − Yt−1 | Yt−1) = Yt−1

( m

2mt
+ O

(

t−2
)

)

+ m

(

P

(

Bin

(

m,
Yt−1 + O(1)

2mt

)

> m/2

)

+

(

1

2
+ pt

)

P

(

Bin

(

m,
Yt−1 + O(1)

2mt

)

= m/2

)

)

=
m

2
+ O

(

t−1/3
)

+ m

(

P

(

Bin

(

m,
1

2
+ O(t−1/3)

)

> m/2

)

+

(

1

2
+ pt

)

P

(

Bin

(

m,
1

2
+ O(t−1/3)

)

= m/2

)

)

,

provided that t < T . Since

P

(

Bin

(

m,
1

2
+ O(t−1/3)

)

= i

)

= P

(

Bin

(

m,
1

2

)

= i

)

(

1 + O(t−1/3)
)

and

P

(

Bin

(

m,
1

2

)

> m/2

)

+
1

2
P

(

Bin

(

m,
1

2

)

= m/2

)

=
1

2
,

we get that

E(Yt − Yt−1 | Yt−1) = m + pt P

(

Bin

(

m,
1

2

)

= m/2

)

+ O(t−1/3).

Since P (Bin (m, 1/2) = m/2) =
(

m
m/2

)

2−m = Θ(1), we can adjust pt = pt(Yt−1) = O(t−1/3) so that

E(Yt−Yt−1 | Yt−1) = m; that is, the sequence of random variables Zt = (Yt−Yεn)−m(t−εn) is a
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martingale. It follows from the classic Hoeffding-Azuma inequality (8), applied to Zt with ct = m
and x = (mn)2/3, that a.a.s., for each εn ≤ t ≤ n,

|Yt −mt| ≤ |Zt| + |Yεn −mεn| ≤ x + (mεn)2/3 ≤ 2(mn)2/3 = o(t).

The rest of the proof is straightforward. We partition the vertex set of Gm
n into red and blue

vertices. The degree tax is a.a.s.

Y 2
n + (2mn− Yn)2

4(mn)2
=

1

2
+ o(1).

It remains to estimate the edge contribution. Clearly, the process guarantees that at least half
of the edges are within the two clusters. However, we will do slightly better than that. For
any i ∈ [m/2], with probability asymptotic to 2P(Bin(m, 1/2) = m/2 + i), at any point of the
process we add m/2 + i edges to some cluster; m/2 edges are added with probability asymptotic to
P(Bin(m, 1/2) = m/2). Hence, the expected number of edges added to some cluster is asymptotic
to

m/2 + E
(
∣

∣

∣
Bin(m, 1/2) −m/2

∣

∣

∣

)

= m/2 + 2

m/2
∑

i=1

i

(

m

m/2 + i

)

2−m.

The expected edge contribution is then asymptotic to

1/2 + E
(∣

∣

∣
Bin(m, 1/2) −m/2

∣

∣

∣

)

(n − εn)/(mn).

Finally, one can bound the edge contribution (independently, from above and from below) by the
sum of independent random variables, and use Chernoff bound to get a concentration. It follows
that a.a.s.

q∗(Gn
m) ≥ E

(
∣

∣

∣
Bin(m, 1/2) −m/2

∣

∣

∣

)

(1 − ε)/m + o(1),

and the result holds after taking ε → 0 sufficiently slowly.
Finally, some elementary calculations show that for any t ∈ [0,m/8], we have

P (Bin(m, 1/2) ≥ m/2 + t) ≥ e−16t2/m

15
;

see, for example, [15]. (More general and precise bounds can be found in [21].) It follows that a.a.s.
q∗(Gn

m) ≥ 2(
√
m/8)e−1/4/(15m) + o(1) = Ω(1/

√
m), and the proof is finished. �

5.2 Upper bound

Recall that the edge expansion ρ = ρ(G) of a graph G is defined as follows:

ρ = min
S⊂V (G),|S|≤|V |/2

e(S, V \ S)

|S| .

In [37] it was shown that a.a.s. ρ(Gn
m) ≥ α, provided that 2(m− 1) − 4α − 1 > 0. In other words,

for any ε > 0 we have that a.a.s.

ρ(Gn
m) ≥ m

2
− 3 + ε

4
.

Using this observation one can easily obtain a non-trivial upper bound for q∗(Gn
m).
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Let ε > 0 be an arbitrary small constant. Consider any partition A = {A1, . . . , Ak} of the
vertex set V (Gn

m). If |Ai| > n/2 for some i, then the degree tax is at least

(
∑

v∈Ai
deg(v, n))2

4|E(Gn
m)| ≥ (m|Ai|)2

4(mn)2
=

1

16
.

On the other hand, if |Ai| ≤ n/2 for all i, then a.a.s. the number of edges between parts is equal to

1

2

k
∑

i=1

e(Ai, V \ Ai) ≥
1

2

k
∑

i=1

ρ|Ai| =
ρn

2
≥
(

m

4
− 3 + ε

8

)

n,

and so the edge contribution is a.a.s. at most

1 −
(

1

4
− 3 + ε

8m

)

=
3

4
+

3 + ε

8m
≤ 15 + ε

16
,

for any m ≥ 2. Therefore, the following result holds.

Theorem 13 For any ε > 0 a.a.s.

q∗(Gn
2 ) ≤ 15 + ε

16
.

Moreover, for any m ≥ 3 a.a.s.

q∗(Gn
m) ≤ 15

16
.

Some stronger expansion properties were recently obtained in [27]. However, whereas they
presumably could be used to obtain some small improvements for an upper bound of q∗(Gn

m)
(for specific values of m), we do not know how to show that q∗(Gn

m) → 0 as m → ∞. Perhaps
q∗(Gn

m) = Θ(1/
√
m) as in the case of random (2m)-regular graphs?

6 The Spatial Preferential Attachment model

Consider Gn = (Vn, En), a graph generated by the SPA model. As the modularity is defined for
undirected graphs, we consider Ĝn that is a graph obtained from Gn by replacing each directed
edge (u, v) by undirected edge uv. (As edges in Gn are always from ‘younger’ to ‘older’ vertices,
there is no problem with generating multigraph; Ĝn is a simple graph.) Let us recall that Vn ⊆ S
where S is the unit hypercube [0, 1]m. We will use the geometry of the model to obtain a suitable
partition that yields high modularity of Gn. The following properties (proved many times; see, for
example, [1, 19]) are the only properties of the model that will be used in the proof: a.a.s. for every
pair i, t such that 1 ≤ i ≤ t ≤ n we have that

deg−(vi, t) = O
(

(t/i)pA1 log2 n
)

, (10)

deg+(vi, t) = O
(

log2 n
)

, (11)

and |E(Gn)| = Θ(n). Since we aim for a result that holds a.a.s., we may assume in the proof below
that these properties hold deterministically. Now, we are ready to state our result for the SPA
model.
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Theorem 14 Let p ∈ (0, 1], A1, A2 > 0, and suppose that pA1 < 1. Then, the following holds
a.a.s.:

q∗(Ĝn) = 1 −O
(

nmax{−1/m,−1+pA1}/2 log9/2 n
)

= 1 − o(1).

Proof. Let ω =
[

nmin{1/m,1−pA1}/2 log n−1/2
]

. Note that ω ≥ nε for some ε > 0 that depends on
the parameters of the model. Let us partition the space S into ω parts as follows: for each integer
1 ≤ r ≤ ω,

Sr =

{

s = (s1, . . . , sm) ∈ S :
r − 1

ω
≤ s1 <

r

ω

}

.

This partition of S naturally gives us a partition A of the vertex set: for each 1 ≤ r ≤ ω,
Ar = Vn ∩ Sr. We will show that a.a.s.

qA(Ĝn) = 1 −O
(

nmax{−1/m,−1+pA1}/2 log9/2 n
)

,

which will finish the proof as q∗(Ĝn) ≥ qA(Ĝn) and always q∗(Ĝn) ≤ 1.
First, let us start with estimating the edge contribution. In order to do that, we need to

estimate the number of edges between different parts. So, let us focus on any part Ar. We will
investigate how many bad edges in Gn connect vertices outside of Ar with vertices inside Ar by
counting (independently) bad edges directed to vertices of similar age. (Note that for convenience
we consider here directed graph Gn instead of Ĝn.) For a given integer k such that 0 ≤ k ≤ ⌊log n⌋,
let

V (k) = {vi ∈ Vn : ek ≤ i < min{ek+1, n + 1}},
E(k) = {(vj , vi) ∈ En : vi ∈ V (k), vj ∈ Vn, and i < j ≤ n}
C(k) = {(vj , vi) ∈ En : vi ∈ V (k) ∩Ar, vj ∈ Vn \Ar, and i < j ≤ n} ⊆ E(k).

It is clear that {V (k) : 0 ≤ k ≤ ⌊log n⌋} and {E(k) : 0 ≤ k ≤ ⌊log n⌋} are partitions of the vertex set
and the edge set (both in Ĝn and Gn), respectively, and so {C(k) : 0 ≤ k ≤ ⌊log n⌋} is a partition
of the bad edges we want to count. It remains to estimate the size of C(k) for a given value of k.

Fix 0 ≤ k ≤ ⌊log n⌋, and let us concentrate on any vi ∈ V (k). It follows from (10) that the
maximum volume of a sphere of influence of vi is O(i−1 log2 n) = O(e−k log2 n) (during the whole
process) and so the maximum radius of influence of vi is O((e−k log2 n)1/m). Therefore, if there is an
edge in the cut directed to vi = (s1, . . . , sm), then vi must fall not only into Ar but also into a strip
within distance O((e−k log2 n)1/m) from one of the two cutting hyperplanes separating Ar from the
neighbouring parts; that is, |s1− r−1

ω | = O((e−k log2 n)1/m) or |s1 − r
ω | = O((e−k log2 n)1/m). Since

|V (k)| = O(ek), we get that

O((e−k log2 n)1/m) · |V (k)| = O(ek(1−1/m)(log n)2/m)

vertices of V (k) are expected to appear in these two strips during the whole process. Hence, it follows
from Chernoff bound that with probability at least 1−exp(−Θ(log2 n)) there are O(ek(1−1/m) log2 n)
vertices in these strips at the end of the process. Note that the exponent of log n has changed from
2/m to 2 in order to guarantee the claimed upper bound is at least log2 n which is required for
a bound to hold with the desired probability. Using (10) one more time, we get that all vertices
introduced in this time period have (final) in-degree O((n/ek)pA1 log2 n). Hence, there are

|C(k)| = O
(

(ek(1−1/m) log2 n) · (n/ek)pA1 log2 n
)

= O
(

npA1ek(1−1/m−pA1) log4 n
)
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edges in the cut with probability at least 1 − exp(−Θ(log2 n)) and so this property holds a.a.s. for
all parts Ar and all values of k. It follows that a.a.s. the number of bad edges involving Ar is at
most

ξr =

⌊logn⌋
∑

k=0

|C(k)| =

⌊logn⌋
∑

k=0

O(npA1ek(1−1/m−pA1) log4 n)

≤
{

log n ·O
(

npA1n1−1/m−pA1 log4 n
)

, if pA1 < 1 − 1/m;
log n ·O(npA1 log4 n), otherwise,

= O(nmax{1−1/m,pA1} log5 n).

Finally, we get an estimate for the edge contribution: a.a.s.

ω
∑

r=1

e(Ar)

|E(Gn)| = 1 −
ω
∑

r=1

ξr
|E(Gn)| = 1 − ω · O(nmax{1−1/m,pA1} log5 n)

Θ(n)

= 1 −O
(

nmax{−1/m,−1+pA1}/2 log9/2 n
)

.

It remains to estimate the degree tax. In order to do that we need to, for a given r under
consideration, estimate

∑

v∈Ar
deg(v) in Ĝn; that is,

∑

v∈Ar
(deg−(v) + deg+(v)) in Gn. As before,

we partition the vertices of Ar into sets containing vertices of similar age. Let k0 be the largest
integer k such that (k−1)ω log2 n < n. Clearly, k0 = O(n/(ω log2 n). This time, for a given integer
k such that 1 ≤ k ≤ k0, let

V (k) = {vi ∈ Vn : (k − 1)ω log2 n < i ≤ min{kω log2 n, n}},

and our goal is to estimate the size of Ar ∩ V (k). The expected number of vertices of V (k) that
fall into Ar is |V (k)|/ω ≤ log2 n + 1 and it follows from Chernoff’s bound that with probability
at least 1 − exp(−Θ(log2 n)) it is O(log2 n). Using (10) for the last time, we get that all vertices
introduced in this time period have (final) in-degree O((n/(kω log2 n))pA1 log2 n), provided k ≥ 2;
and O(npA1 log2 n) for k = 1. It follows that with the desired probability

∑

v∈Ar

deg−(v) = O(npA1 log2 n) +

k0
∑

k=2

O((n/(kω log2 n))pA1 log2 n) ·O(log2 n)

= O(npA1 log2 n) + O((n/(ω log2 n))pA1 log4 n) ·O(k1−pA1

0 ) = O(n log2 n/ω),

and so it holds a.a.s. for all r. Similarly, using Chernoff’s bound and (11) we get that a.a.s. for all
r we have |Ar| ∼ n/ω and so

∑

v∈Ar

deg+(v) = O(n/ω) ·O(log2 n) = O(n log2 n/ω).

Finally, we are able to get an estimate for the degree tax in Ĝn: a.a.s.

ω
∑

r=1

(
∑

v∈Ar
deg(v))2

4|E(Gn)|2 =
ω · O((n log2 n/ω)2)

Θ(n2)

= O(log4 n/ω) = O
(

nmax{−1/m,−1+pA1}/2 log9/2 n
)

,

and the proof is finished. �
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7 Discussion and future research

In this paper, we investigated modularity and provided precise theoretical bounds for several ran-
dom graph models, such as random d-regular graphs, constant average degree graphs, preferential
attachment and SPA models. However, there are plenty of directions for future research. For ex-
ample, for preferential attachment model we expect that q∗(Gn

m) = Θ(1/
√
m). However, even the

fact that q∗(Gn
m) → 0 as m → ∞ is still unproven.

Also, in this paper we studied the most popular version of modularity, while other definitions
(suitable for some particular clustering problems) were proposed in the literature (see discussion
in [24]). For example, it was proposed to multiply the degree tax by a resolution parameter γ.
Note that most of our results can be easily extended to such definition, as we separately estimate
edge contribution and degree tax. Also, Erdős–Rényi random graph model can be used as a null
model (instead of the pairing model) to compute the degree tax. This version of modularity is
much easier to analyze, but such null model cannot describe real networks well, since it has an
unrealistic Poisson degree distribution.

Finally, we would like to note that there is another model, which, similarly to SPA, combines
geometry and preferential attachment [23]. It would be interesting to investigate the modularity
for this model and we expect that its modularity tends to 1 (as for the SPA model). However, these
two models are different and our result does not imply anything for the other model.
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Appendix

7.1 Random d-regular graphs, some ideas for an upper bound

Idea 1: Recall that in order to get the current best upper bound we showed that a.a.s. no set of
size xn induces more than ȳ(x, d)xn/2 edges. As a result the largest value of yi/d− xi in (4) is at
most U3(d). For example, for d = 3 the optimal choice that maximizes U3(3) is: x = x̂ ≈ 0.0225,
y = ŷ ≈ 2.4789, and so U3(3) ≈ 0.8038 as reported in Table 1. However, clearly it is impossible
to partition a graph precisely into parts of size x̂n. It is possible to show that the following upper
bound holds, which is clearly not larger than the previous one:

U4 = U4(d) := max
k∈N\{1}

(

ȳ(1/k, d)

d
− 1/k

)

.

Unfortunately, this maximum value is achieved for k = 45 (which corresponds to parts of size
roughly 0.0222n, and no improvement is achieved: U4(3) ≈ 0.8038. The reason this idea fails is
that the optimal value of x̂ is small so that rounding to the nearest integer for k does not improve
the bound much.

Idea 2: Let us look at (4) again but this time let us order the terms so that

(y1
d

− x1

)

≥
(y2
d

− x2

)

≥ . . . ≥
(yk
d

− xk

)

.

It follows that

qA =
k
∑

i=1

xi

(yi
d
− xi

)

≥ x1

(y1
d

− x1

)

+ (1 − x1)
(y2
d

− x2

)

.

It is slightly more tedious than before, but one can get an improvement by considering (ordered)
disjoint pairs of vertices X1,X2 with |X1| = x1n, |X2| = x2n, e(X1) = y1x1n/2, e(X2) = y2x2n/2,
and e(X1,X2) = zn. Unfortunately, this idea also does not provide any reasonable improve-
ment. For d = 3, the expected number of pairs of sets for the following vector (x1, x2, y1, y2, z) =
(x̂1, x̂2, ŷ1, ŷ2, ẑ) ≈ (0.0239, 0.0225, 2.4830, 2.4790, 0.000037) and, again, no substantial improvement
is achieved: U5(3) ≈ 0.8038.

Idea 3: As before, let us concentrate on the case d = 3 but similar ideas can be used for
any integer d ≥ 3. We can try to use the fact that Gn,3 can be constructed by putting a random
matching on the vertices of a Hamiltonian cycle. Let us fix any set of vertices of size xn that
induces zn components (paths) by restricting only to edges of the Hamiltonian cycle. Each such
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set can be represented by the following triple: vertex v, vector (a1 − 1, . . . , azn − 1), and vector
(b1 − 1, . . . , bzn − 1): v starts some path, ai is the number of vertices on path i, bi is the number
of vertices not in the set and right after path i. The number of such sets is at most n

(xn
zn

)((1−x)n
zn

)

.
The number of edges within this set that are part of the Hamiltonian cycle is xn− zn. Hence, in
order for the set to induce yxn/2 edges, (yx/2−x+ z)n edges must be coming from the matching.

The hope is (that is, was) that for small values of z, there are only a few sets to consider. On
the other hand, if z is closer to x, then less edges are “for free” (edges of the Hamiltonian cycle).
Unfortunately, again this idea does not lead to any substantial improvement. Concentrating on
d = 3, x̂ = 0.0225, ŷ = 2.4789, and tuning ẑ ≈ 0.00392, the expected number of such sets is tending
to infinity as n → ∞.

Conclusion: The lack of improvement is disappointing but perhaps should not be surprising.
Looking at one or two parts of a partition maximizing q∗ is not enough (local property). Having
one large term yi/d− xi in (4) might be possible but having all of them to be large perhaps is not.
So in order to improve the upper bound, one needs to consider all parts at the same time (global
property).
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